Effect of 1,3-1,6 β-Glucan on Natural and Experimental Deformed Wing Virus Infection in Newly Emerged Honeybees (Apis mellifera ligustica)
نویسندگان
چکیده
The Western Honeybee is a key pollinator for natural as well as agricultural ecosystems. In the last decade massive honeybee colony losses have been observed worldwide, the result of a complex syndrome triggered by multiple stress factors, with the RNA virus Deformed Wing Virus (DWV) and the mite Varroa destructor playing crucial roles. The mite supports replication of DWV to high titers, which exert an immunosuppressive action and correlate with the onset of the disease. The aim of this study was to investigate the effect of 1,3-1,6 β-glucan, a natural innate immune system modulator, on honeybee response to low-titer natural and high-titer experimental DWV infection. As the effects exerted by ß-glucans can be remarkably different, depending on the target organism and the dose administered, two parallel experiments were performed, where 1,3-1,6 ß-glucan at a concentration of 0.5% and 2% respectively, was added to the diet of three cohorts of newly emerged honeybees, which were sampled from a Varroa-free apiary and harboured a low endogenous DWV viral titer. Each cohort was subjected to one of the following experimental treatments: no injection, injection of a high-copy number DWV suspension into the haemocel (experimental DWV infection) or injection of PBS into the haemocoel (physical injury). Control bees fed a ß-glucan-free diet were subjected to the same treatments. Viral load, survival rate, haemocyte populations and phenoloxidase activity of each experimental group were measured and compared. The results indicated that oral administration of 0.5% ß-glucan to naturally infected honeybees was associated with a significantly decrease of the number of infected bees and viral load they carried, and with a significant increase of the survival rate, suggesting that this natural immune modulator molecule might contribute to increase honeybee resistance to viral infection.
منابع مشابه
Quantitative real-time reverse transcription-PCR analysis of deformed wing virus infection in the honeybee (Apis mellifera L.).
Deformed wing virus (DWV) can cause wing deformity and premature death in adult honeybees, although like many other bee viruses, DWV generally persists as a latent infection with no apparent symptoms. Using reverse transcription (RT)-PCR and Southern hybridization, we detected DWV in all life stages of honeybees, including adults with and without deformed wings. We also found DWV in the parasit...
متن کاملDeformed wing virus is a recent global epidemic in honeybees driven by Varroa mites.
Deformed wing virus (DWV) and its vector, the mite Varroa destructor, are a major threat to the world's honeybees. Although the impact of Varroa on colony-level DWV epidemiology is evident, we have little understanding of wider DWV epidemiology and the role that Varroa has played in its global spread. A phylogeographic analysis shows that DWV is globally distributed in honeybees, having recentl...
متن کاملMolecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.).
Deformed wing virus (DWV) of honeybees (Apis mellifera) is closely associated with characteristic wing deformities, abdominal bloating, paralysis, and rapid mortality of emerging adult bees. The virus was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of DWV is 10,140 nucleotides in length and contains a single large open reading frame encoding a 328-kD...
متن کاملDeformed wing virus
The unexplained collapse of honeybee (Apis mellifera) colonies across the world continues to fascinate both the scientific and mainstream media alike. This is mainly due to the worldwide importance of honeybees in ecological and commercial sectors. We recently reported how the ectoparasitic mite, Varroa destructor, altered the viral landscape in the Hawaiian archipelago by decreasing the viral ...
متن کاملThe flight physiology of reproductives of Africanized, European, and hybrid honeybees (Apis mellifera).
Neotropical African honeybees (Apis mellifera scutellata), in the process of spreading throughout tropical and subtropical regions of the Americas, hybridize with and mostly replace European honeybees (primarily Apis mellifera mellifera and Apis mellifera ligustica). To help understand this process, we studied the effect of lineage (African, European, or hybrid) on the flight physiology of hone...
متن کامل